Abstract
In this work, we theoretically construct exact mappings of many-particle bosonic systems onto quantum rotor models. In particular, we analyze the rotor representation of spinor Bose-Einstein condensates. In a previous work [R. Barnett et al., Phys. Rev. A 82, 031602(R) (2010)] it was shown that there is an exact mapping of a spin-one condensate of fixed particle number with quadratic Zeeman interaction onto a quantum rotor model. Since the rotor model has an unbounded spectrum from above, it has many more eigenstates than the original bosonic model. Here we show that for each subset of states with fixed spin ${F}_{z}$, the physical rotor eigenstates are always those with the lowest energy. We classify three distinct physical limits of the rotor model: the Rabi, Josephson, and Fock regimes. The last regime corresponds to a fragmented condensate and is thus not captured by the Bogoliubov theory. We next consider the semiclassical limit of the rotor problem and make connections with the quantum wave functions through the use of the Husimi distribution function. Finally, we describe how to extend the analysis to higher-spin systems and derive a rotor model for the spin-two condensate. Theoretical details of the rotor mapping are also provided here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.