Abstract

Analysis of electric fields generated inside the microchannels of a microfluidic device for electrical lysis of biological cells along with experimental verification are presented. Electrical lysis is the complete disintegration of cell membranes, due to a critical level of electric fields applied for a critical duration on a biological cell. Generating an electric field inside a microchannel of a microfluidic device has many advantages, including the efficient utilization of energy and low-current requirement. An ideal microchannel model was compared with a practical microchannel model using a finite element analysis tool that suggests that the overestimation error can be over 10%, from 2.5 mm or smaller, in the length of a microchannel. Two analytical forms are proposed to reduce this overestimation error. Experimental results showed that the high electric field is confined only inside the microchannel that is in agreement with the simulation results. Single cell electrical lysis was conducted with a fabricated microfluidic device. An average of 800 V for seven seconds across an 8 mm-long microchannel with the dimension of 100 μm × 20 μm was required for lysis, with electric fields exceeding 100 kV/m and consuming 300 mW.

Highlights

  • Generating high electric fields inside microchannels are needed for many microfluidic applications, such as lab-on-a-chip (LOC), micro-total-analysis-system and biomedical microelectromechanical systems [1,2]

  • Electric fields are commonly used in microfluidic devices and LOCs to stimulate, manipulate and analyze biological elements

  • We have conducted an analysis of electric fields inside the microchannels of an ideal and a practical model

Read more

Summary

Introduction

Generating high electric fields inside microchannels are needed for many microfluidic applications, such as lab-on-a-chip (LOC), micro-total-analysis-system (μTAS) and biomedical microelectromechanical systems (bioMEMS) [1,2]. Uniform or non-uniform distribution of the electric fields can be utilized to process biological elements, like cell lysis, electroporation, electrophoresis separation, deoxyribonucleic acid (DNA) detection and separation and electro-osmotic flow generation for electrokinetic (EK) microfluidic pumps [3,4,5]. We are motivated to develop a POC device that performs DNA detection within few seconds. Such a development will be valuable for emergency responders, criminal investigators and forensic identification. The novelty of this work is the analysis of the estimation errors of electric fields of typical microfluidic devices used in such experiments and the models to reduce such estimation errors to achieve a high yield, which is critical for single-cell analysis

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.