Abstract

Cell lysis is a necessary step in the analysis of intracellular contents. It has been recently demonstrated in microfluidic devices using four methods: chemical lysis, mechanical lysis, thermal lysis, and electrical lysis [1]. The locally high electric fields needed for electrical lysis have been achieved using micro-electrodes and micro-constrictions for pulsed and continuous DC electric fields, respectively. However, since the two determining factors of electrical lysis are field strength and exposure time, opposing pressure-driven flow must often be used in pure DC lysis to reduce the velocity of the cells and to ensure the cells spend sufficient time in the high electric field region [1,2]. Using DC-biased AC fields can easily fulfill these requirements as only the DC component contributes to cell electrokinetic transport. Prior to lysis, cell concentration can be increased by trapping using dielectrophoresis (DEP), which may occur with either DC or DC-biased AC electric fields [3,4]. This operation is useful in cases where the cell supply is limited or when the cell concentration is too low in general. In this work, red blood cells are used to demonstrate the smooth switching between electrical lysing and trapping in a microchannel constriction. The transition between lysis and trapping is realized by tuning the DC component in a DC-biased AC electric field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call