Abstract
The programmable logic array (PLA) is a basic and important building circuit for VLSI chips. Operating behaviors of several conventional PLAs are analyzed first to find out their speed and power bottlenecks. Then, new circuit design techniques for the CMOS PLA are proposed in the hopes of fulfilling the requirements of high speed and low power at the same time. Finally, high speed is achieved through the combined effect of utilization of a fast pseudofootless dynamic circuit and a reduced interplane clock delay. On the other hand, low power is achieved because the power consumption from the three main sources, i.e., the AND-plane circuits, the interplane buffers, and the OR-plane circuits, can be reduced significantly and simultaneously. The delay time and the power consumption of the critical path of a PLA are taken as the performance evaluation parameters. When the 50/spl times/50/spl times/64 PLAs are designed in a 0.35-/spl mu/m 1P4M CMOS technology, the maximum operating frequency of the proposed PLA is 1.61 times higher than that of the fastest conventional PLA. Furthermore, power reduction can be as high as 18% and 43% when the operating frequencies are set to be 100 MHz and 50 MHz, respectively, as compared to the most power-efficient conventional PLA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.