Abstract

Boiling water reactor (BWR) instabilities may occur when, starting from a stable operating condition, changes in system parameters bring the reactor towards an unstable region. In order to design more stable and safer core configurations, experimental and theoretical studies about BWR stability have been performed to characterise the phenomenon and to predict the conditions for its occurrence. In this work, contributions to the study of BWR instability phenomena are presented. The RELAP5/MOD3.3 thermal-hydraulic (TH) system code and the PARCS-2.4 3D neutron kinetic (NK) code were coupled to simulate BWR transients. Different algorithms were used to calculate the decay ratio (DR) and the natural frequency (NF) from the power oscillation predicted by the transient calculations as two typical parameters used to provide a quantitative description of instabilities. The validation of the code model set up for the Peach Bottom Unit 2 BWR plant is performed against low-flow stability tests (LFSTs). The four series of LFST have been performed during the first quarter of 1977 at the end of cycle 2 in Pennsylvania. The tests were intended to measure the reactor core stability margins at the limiting conditions used in design and safety analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.