Abstract
Abstract Pressure vessel components in operating Boiling Water Reactor (BWR) plants are subjected to a variety of loading and environmental conditions which could lead to degradation over time. The significant damage mechanisms such as fatigue, stress corrosion cracking (SCC) and irradiation embrittlement are considered in the design basis of the reactor components and thus provide adequate structural margins over the operating life of the plant. Nevertheless, when the design basis assumptions are exceeded, e.g., thermal cycles, vibratory loading or chemistry transients, cracking may occur in pressure boundary components. Several proactive measures are being implemented to address this concern and assure the structural margins in BWR plants. These measures include: (i) control of materials and design to mitigate SCC and improvement of the environmental conditions through the implementation of Hydrogen Water Chemistry, (ii) advances in automated ultrasonic inspection of the BWR pressure vessel and piping, (iii) improved monitoring techniques for tracking fatigue usage and SCC effects in the piping and in the core, and (iv) development and qualification of durable repairs and specialized techniques such as use of high purity materials and temper bead repair. This paper describes current progress in implementing these proactive approaches for Boiling Water Reactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.