Abstract
The melt infiltration in porous debris is of importance to severe accident prediction and mitigation in nuclear power plants (NPPs), but its mechanism remains elusive. In this study, a computational fluid dynamics (CFD) model is proposed to simulate the evolution of melt infiltration within porous media, incorporating both solidification and melting processes. The CFD model is validated against the experiment (REMCOD facility) and Moving Particle Semi-implicit (MPS) simulation results. Building upon this validated model, the influence of the melt superheat, the initial particle temperature, and its surface wettability on melt infiltration dynamics are mainly analyzed. It is found that increased initial melt superheat enhances melt infiltration length and rate; higher initial particle temperatures promote deeper and faster infiltration, while lower temperatures may result in solidification that blocks further infiltration. Additionally, the wettable particulate bed can enhance melt relocation and heat transfer, but it also accelerates the solidification of the melt, which complicates the infiltration process. Furthermore, phase changes could intensify melt flow instability. This work may expand our understanding of melt infiltration dynamics and pave the way to severe accident modeling in NPPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.