Abstract
In order to design more stable and safer core configurations, experimental and theoretical studies about BWR (Boiling Water Reactor) instability have been performed to characterize the phenomenon and to predict the conditions for its occurrence. The instabilities can be caused by interdependencies between thermal-hydraulic and reactivity feedback parameters such as the void-coefficient, for example, during a pressure perturbation event. In this work, the RELAP5-MOD3.3 thermal-hydraulic system code and the PARCS-2.4 3D neutron kinetic code were coupled to simulate BWR transients. The pressure perturbation is considered in order to study in detail this type of transient. Two different algorithms developed at the University of Pisa were used to calculate the Decay Ratio (DR) and the natural frequency (NF) from the power oscillation signals obtained from the transient calculations. The validation of a code model set up for the Peach Bottom-2 BWR plant is performed against Low-Flow Stability Tests (LFST). The four series of Stability Tests were performed at Peach Bottom Unit 2 in 1977 at the end of cycle 2 in order to measure the reactor core stability margins at the limiting conditions used in design and safety analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.