Abstract

Communication systems such as those used on satellite platforms demand high performance from individual components that make up the various systems and sub-systems. Switching and routing of RF signals between various modules is a routine and critical operation that determines the overall efficiency of the entire system. In this paper, we present the design and fabrication aspects of a direct contact RF MEMS switch designed to operate in the X band (8–12 GHz) with a target insertion of about 0·5 dB and isolation better than 30 dB. The actuation voltage is expected to be around 50 V. The die size is designed to be 3 mm (H) × 3 mm(W) × 2 mm(H). The switch is built from a low residual stress device layer of a highly conducting (0·005 Ohms-cm) silicon on insulator (SOI) wafer. After subsequent lithographic steps, the wafer is bonded to a Pyrex glass wafer which has been previously patterned with gold transmission lines and pull in electrodes. Being built from a single crystal silicon structure, the mechanical robustness of the actuator is much greater than the those in similar membrane-based devices. A 6 mask fabrication process utilizing Deep Reactive Ion Etching to achieve high aspect ratio stiction free structures was developed and implemented. Devices from the first fabrication run are being analysed in our laboratory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.