Abstract

In this study, an attempt is made to improve the energy and exergy performance of solar air heater by employing double pass with different absorber surface geometries (roughened, finned, and v-corrugated wire mesh) in the second pass, and also by mounting longitudinal fins in the back side of the absorber plate (first pass). The effect of varied mass flow rate and solar intensity on temperature rise of air, energy efficiency, exergy gain and pressure drop at steady state condition was determined for different types of solar air heaters utilizing an indoor solar simulator. The temperature rise of air, thermal efficiency and exergy gain depends on mass flow rate, surface geometries of absorber and solar intensity, whereas the pressure drop depends on mass flow rate and surface geometries of absorber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.