Abstract

Extreme climate events are predicted to increase in frequency and severity due to contemporary climate change. Recent studies have documented the evolutionary impacts of extreme events on single species, but no studies have yet investigated whether such events can drive community-wide patterns of trait shifts. On 22 January 2020, subtropical south Florida experienced an extreme cold episode during which air temperatures dropped below the lower thermal limit of resident lizard populations. In the week immediately after the cold event, we documented decreased lower thermal limits (CTmin) of six co-occurring lizard species that vary widely in ecology, body size and thermal physiology. Although cold tolerance of these species differed significantly before the cold snap, lizards sampled immediately after had converged on the same new, lower limit of thermal tolerance. Here, we demonstrate that extreme climate events can drive substantial and synchronous community-wide trait changes and provide evidence that tropical and subtropical ectotherms-often characterized as unable to withstand rapid changes in climatic conditions-can endure climatic conditions that exceed their physiological limits. Future studies investigating the mechanisms driving these trait shifts will prove valuable in understanding the ability of ectotherm communities to mitigate climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call