Abstract
Natural populations are subject to selection caused by a range of biotic and abiotic factors in their native habitats. Identifying these agents of selection and quantifying their effects is key to understanding how populations adapt to local conditions. We performed a factorial reciprocal-transplant experiment using locally adapted ecotypes of Arabidopsis thaliana at their native sites to distinguish the contributions of adaptation to soil type and climate. Overall adaptive differentiation was strong at both sites. However, we found only very small differences in the strength of selection on local and non-local soil, and adaptation to soil type at most constituted only a few per cent of overall adaptive differentiation. These results indicate that local climatic conditions rather than soil type are the primary driver of adaptive differentiation between these ecotypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.