Abstract
Upward flame spread and flame interactions over multiple solid fuels are experimentally studied, and the effects of flame interactions on the flame spreading rates are analyzed. Flame spreading characteristics and spreading rates are measured and compared for six different geometric arrangements of thin solids at different solid width and separation distance between solids. The flame spread rate increases as the separation distance between the parallel solids decreases because of the flow channeling effect and radiation interactions, which reaches the maximum at an intermediate separation distance and then decreases as the separation distance becomes smaller due to the flow resistance and limited thermal expansion. To compare the six types of solid geometry studied, the highest flame spread rate is enclosure type of solids, followed by ⊓-shaped solids, four parallel solids, two parallel solids, L-shaped solids, and single solid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.