Abstract

An experimental investigation of diffusion flames spreading along thin solid fuels in concurrent and opposed configurations in a gravity induced flow is presented in this study. Flame spreading over one side as well as on both sides of the fuel is studied. MATLAB is used to post process high definition flame videos to obtain flame spread rate as a function of inclination angle of the fuel surface, number of fuel sheets and separation distance. For one side burning, present results are compared with those from literature. For double side burning, the inclination angle is varied from 90° (upward spread) to −90° (downward spread), measured with respect to the horizontal (0°). The spread rates in double side burning are higher and the maximum spread rate is observed for 90° case, as opposed to 120° in single side burning. The upward flame spread displays a non-uniform temporal variation, especially when the orientation angle is greater than 20°. Fuel cracking was noted to be most severe at 90°. However, the downward flame spread rate is almost steady. The multiple fuel sheets (2 and 3 sheets) are kept parallel to each other with the separation distance between them varied from 0.5 to 3 cm. In upward flame spread, for a small separation distance of 0.5 cm, multiple sheets produce spread rates lower than the single fuel case due to insufficient oxygen supply. At 1.5 cm separation, maximum flame spread rate is observed for multiple sheet cases, due to increased availability of oxygen and enhanced heat transfer from neighboring flames. At 3 cm, the spread rate is almost the same in all cases indicating that the interference effects have become weaker. The variation of flame-spread rate in multiple fuel sheets with respect to inclination angle is almost similar to that of single sheet cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.