Abstract
Commercial multi-threshold standard logic cell libraries are designed for nominal super-threshold circuits. If blindly used at near- and sub-threshold voltages, such libraries exhibit excessively coarse granularity in driving strength, leading to sub-optimal logic synthesis and placement-and- routing results. To tackle this problem, a holistic methodology for designing a near- and sub-threshold standard cell library that has fine driving strength granularity is presented in this paper. Meanwhile, the proposed methodology leverages inverse narrow width effect, reverse short channel effect and forward body biasing to modulate the driving strength at low area overheads. Based on the proposed methodology, we develop a 65nm multi-threshold-voltage, multi-channel-length library and benchmark it against the commercial library across several common circuits. The results show a 26.6% reduction in power-delay product, a 28.1% reduction in energy-delay product, and a 27.0% reduction in leakage power at 5.8% area overhead on average, confirming the efficiency of the methodology in near- and sub-threshold digital circuits design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.