Abstract

Portable/Implantable biomedical applications usually exhibit stringent power budgets for prolonging battery life time, but loose operating frequency requirements due to small bio-signal bandwidths, typically below a few kHz. The use of sub-threshold digital circuits is ideal in such scenario to achieve optimized power/speed tradeoffs. This paper discusses the design of a sub-threshold standard cell library using a standard 0.18-µm CMOS technology. A complete library of 56 standard cells is designed and the methodology is ensured through schematic design, transistor width scaling and layout design, as well as timing, power and functionality characterization. Performance comparison between our sub-threshold standard cell library and a commercial standard cell library using a 5-stage ring oscillator and an ECG designated FIR filter is performed. Simulation results show that our library achieves a total power saving of 95.62% and a leakage power reduction of 97.54% when compared with the same design implemented by the commercial standard cell library (SCL).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.