Abstract

In this study, a sensitive dual-signal electrochemiluminescence (ECL) immunosensor was developed for okadaic acid (OA) detection utilizing copper nanoclusters (CuNCs) and Ru(bpy)32+-doped silica nanoparticles (RuSiNPs). Interestingly, the CuNCs could simultaneously enhance both cathodic (−0.95 V) and anodic (+1.15 V) ECL signals of RuSiNPs, forming a dual-signal ECL sensing platform. Further, RuSiNPs@CuNCs were used as immunomarkers by covalently conjugating them with an anti-OA monoclonal antibody (mAb) to form probes. Finally, dual ECL signals of the immunosensor were fabricated and showed good linear relationships with OA concentrations in the range of 0.05–70 ng mL−1, having a median inhibitory concentration (IC50) of 1.972 ng mL−1 and a limit of detection of 0.039 ng mL−1. Moreover, the constant ratio of the cathodic and anodic ECL peaks achieved self-calibration of the detection signal and improved the reliability of the results. Finally, we successfully applied the ECL sensor to detect OA in spiked oyster samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call