Abstract

We present a method for the simulation of two-phase flows which can be applied to problems characterised by the presence of up to several hundreds of gas bubbles. The bubble model is kept simple, requiring only six parameters to describe the shape of a single bubble. The model is coupled to a conventional time discrete finite-volume scheme for the solution of the Navier–Stokes equations by the density field which is calculated on basis of the information on the positions and the shapes of the bubbles before each time step. The motion of the bubbles is in turn calculated from an analysis of the computed flow field. Systematical errors due to simplifications are eliminated by the introduction of correction factors. For a selection of fluid dynamical problems, the results of simulations using the method are compared to experimental data. Good quantitative agreement could be found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call