Abstract

This paper reports an experimental and computational study on the shape and motion of an air bubble, contained in a highly viscous Newtonian liquid, as it passes through a rectangular channel having a constriction orifice. The magnitude of the viscosity ratios, λ, and capillary numbers, Ca, explored is high: 5.5×105<λ<3.9×106 and 2.9<Ca<35.9 respectively. A multipass rheometer is used for the experimental work: air bubbles are suspended in 10 Pa s and 70 Pa s polybutene viscosity standards and passed through an orifice-plate geometry constructed within an optical flow-cell. High levels of bubble distortion are observed, including bubbles that resemble ‘crescent moons’. Simulation work is carried out using an implementation of the volume of fluid method in the freely-available finite-volume computational fluid dynamics code OpenFOAM. Quantitative data pertaining to the motion and shape of the bubble was extracted from both the experimental and simulation work. Initially, a good match between numerical simulation and experimental work could not be obtained: this problem was alleviated by changing the viscosity averaging method from an arithmetic mean to a logarithmically-weighted arithmetic mean. Medium- and high-resolution simulations using this new viscosity averaging method were able to match experimental data with coefficients of determination, R2, typically 0.898<R2<0.985.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.