Abstract

In this article, we propose a quantitative, non-destructive and noninvasive approach to obtain electromagnetic properties of liquid specimens utilizing a home-designed near-field microwave microscopy. The responses of aqueous solutions can be acquired with varying concentrations, types (CaCl2, MgCl2, KCl and NaCl) and tip–sample distances. An electromagnetic simulation model also successfully predicts the behaviors of saline samples. For a certain type of solutions with varying concentrations, the results are concaves with different bottoms, and the symmetric graphs of concave extractions can clearly identify different specimens. Moreover, we obtain electromagnetic images of capillaries with various saline solutions, as well as a Photinia × fraseri Dress leaf.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.