Abstract

Near-field scanning microwave microscopy is employed for quantitative imaging at 4 GHz of the local impedance for monolayer and few-layer graphene. The microwave response of graphene is found to be thickness dependent and determined by the local sheet resistance of the graphene flake. Calibration of the measurement system and knowledge of the probe geometry allows evaluation of the AC impedance for monolayer and few-layer graphene, which is found to be predominantly active. The use of localized evanescent electromagnetic field in our experiment provides a promising tool for investigations of plasma waves in graphene with wave numbers determined by the spatial spectrum of the near-field. By using near-field microwave microscopy one can perform simultaneous imaging of location, geometry, thickness, and distribution of electrical properties of graphene without a need for device fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call