Abstract

Electrical endurance characteristic of resistive switching MnOx thin film was investigated associated with various oxygen concentrations. From experimental results of various top electrode changing on the examined devices and oxygen concentration during the post-deposition annealing process, it was revealed that electrical endurance characteristic can be significantly improved by possessing high “non-lattice oxygen” concentration in resistive switching thin film and minimizing out-diffusion of oxygen during resistive switching. Finally, a 250 nm-diameter via-hole structure device, composed of TiN/MnOx/Pt, was fabricated and the promising electrical endurance and retention characteristics and the impressively narrow distribution of resistive switching operation parameters were confirmed in the MnOx thin film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.