Abstract

Two polymers, ultrahigh-molecular-weight polyethylene (UHMWPE) and polycarbonate, were slid dry against continuous fiber graphite/epoxy composites in multiple-pass friction and wear tests. High and low valves of load, speed, fiber orientation, and virgin surface roughness were used to find their effect on the coefficient of friction and wear rate. Regression equations were developed from the data to help describe the effects of various independent variables. For the total distance slid of 176 m, there was no significant effect of sliding speed on coefficient of friction. The coefficient of friction for UHMWPE was found to depend on surface roughness and fiber orientation. For polycarbonate, the coefficient of friction was very complex, containing a three-factor interaction between normal load, surface roughness, and fiber orientation. The wear rate for UHMWPE was a function of normal load, surface roughness, and a nonlinear term in normal load and surface roughness. The wear rate for polycarbonate was significantly affected by all variables except fiber orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.