Abstract
The wear of ultrahigh molecular weight polyethylene (UHMWPE) bearing against 316 stainless steel or cobalt chromium (Co-Cr) alloy was measured using a 12-channel wear tester especially developed for the evaluation of candidate materials for prosthetic joints. The coefficient of friction and wear rate were determined as a function of lubricant, contact stress, and metallic surface roughness in tests lasting 2–3 million cycles, the equivalent of several years use of a prosthesis. Wear was determined by the weight loss of the polyethylene (PE) specimens corrected for the effect of fluid absorption. The friction and wear processes in blood serum differed markedly from those in saline solution or distilled water. Only serum lubrication produced wear surfaces resembling those observed on removed prostheses. The experimental methods provided accurate reproducible measurement of PE wear. The long-term wear rates were proportional to load and sliding distance. Although the PE wear rate increased with increasing surface roughness, wear was not severe except with very coarse metal surfaces. The data obtained in these studies formed a comparison basis for the subsequent evaluation of potentially superior materials for prosthetic joints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.