Abstract

The influence of fluid inertia on the SFD force response to circular-centered motions of arbitrary amplitude is analyzed in detail, For finite length, locally sealed SFDs, integro-differential equations are derived in terms of the mean flow components. Numerical predictions, using the finite-element method, show that the damping and added mass coefficients remain invariant as the Reynolds number increases from small values to a moderate Reynolds number equal to 10. An approximate, finite-length, solution for the fluid-film forces has been analytically obtained which accounts for the fluid-inertia effect as well as local end seal effects in symmetric SFD configurations. The approximate solution, strictly valid for small Reynold numbers (Re < 1), agrees well with the results from the numerical solution for most SFD configurations and orbit radii considered. Presented as an American Society of Lubrication Engineers paper at the ASME/ASLE Tribology Conference in Pittsburgh, Pennsylvania, October 20–22, 1986

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call