Abstract

The role of consumers as price-sensitive participants in electricity markets is considered essential to ensure efficient and secure operations of electricity systems. Yet the uncertain or unknown consequences of active market participation remain a large barrier for active consumer-side market participation. Simulations are a powerful tool to reduce this uncertainty by giving consumers an insight on the potential benefits and costs of market participation. However, the simulation setup must be adapted to each market context and each consumer market participation strategy. To simplify the simulation development process and improve the comparability of simulation results, this paper proposes a modular yet systematic electricity market modelling framework. The framework applies object-oriented programming concepts for business ecosystem modelling presented in previous works to develop an agent-based model of a consumer-centric electricity market ecosystem. The market ecosystem is represented by a multitude of interacting submarkets with their own logic. Within submarkets, context-independent and context-dependent elements are distinguished to provide model abstraction which can be adapted to different contexts. This framework is illustrated by applying it to three different submarkets in the Western Danish electricity market context: the Nordpool day-ahead market, the Nordpool intraday market, and the Frequency Containment Reserve market. The submarket role abstractions allow to benefit from the commonalities between the analysed submarkets during model implementation, while the role parametrisations allow to quickly adapt the roles to each market context. The implementation of the modelling framework in the Nordic context highlights the benefits of a modular approach in a liberalised and unbundled market context.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call