Abstract

This study investigates the technical and financial potential of an aggregation of residential heat pumps to deliver demand response (DR) services to the Dutch Frequency Containment Reserve (FCR) market. To determine this potential, a quantitative model was developed to simulate a heat pump switching process. The model utilizes historical frequency and heat pump data as input to determine the optimal weekly bid size considering the regulations and fine regime of the FCR market. These regulations are set by the Dutch Transmission System Operator (TSO). Two strategies were defined that can be employed by an aggregator to select the optimal bid size; the ‘always available’ scenario and the ‘always reliable’ scenario. By using the availability and reliability as constraints in the model, the effects of TSO regulations on the potential for FCR are accurately assessed. Results show a significant difference in bid size and revenue of the strategies. In the ‘always available’ scenario, the average resultant bid size is 1.7 MW, resulting in €0.22 revenue per heat pump (0.5kWp) per week. In the ‘always reliable’ scenario, the average resultant bid size is 7.9 MW, resulting in €1.00 revenue per heat pump per week on average in the period 03-10-2016–24-04-2017. This is based on a simulation of 20,000 heat pumps with a total capacity of 1 MWp. Results show a large difference in potential between the two strategies. Since the strategies are based on TSO-regulations and strategic choices by the aggregator, both seem to have a strong influence on the financial potential of FCR provision. In practice, this study informs organizations that provide FCR with knowledge about different bidding strategies and their market impact.

Highlights

  • With the transition towards a low-carbon energy supply system underway, the share of electricity generated by renewable energy resources (RER) is likely to increase

  • Since the strategies are based on Transmission System Operator (TSO)-regulations and strategic choices by the aggregator, both seem to have a strong influence on the financial potential of Frequency Containment Reserve (FCR)

  • By using the ‘always available’ strategy, the aggregator successfully aims for a bid size that

Read more

Summary

Introduction

With the transition towards a low-carbon energy supply system underway, the share of electricity generated by renewable energy resources (RER) is likely to increase. In Europe, wind and solar energy have the highest potential in terms of renewable electricity generation [1]. Wind and solar energy resources are intermittent, as their availability depends on weather patterns [2]. To maintain the system frequency within acceptable limits, electricity supply and demand needs to be balanced. Supply could be adjusted to match demand by dispatching fossil-fueled generators. Given the transition towards renewable energy generation, the traditional electricity grid needs to

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call