Abstract

Sequential Monte Carlo particle filters (PFs) are useful for estimating nonlinear non-Gaussian dynamic system parameters. As these algorithms are recursive, their real-time implementation can be computationally complex. In this paper, we analyze the bottlenecks in existing parallel PF algorithms, and propose a new approach that integrates parallel PFs with independent Metropolis---Hastings (PPF-IMH) resampling algorithms to improve root mean-squared estimation error (RMSE) performance. We implement the new PPF-IMH algorithm on a Xilinx Virtex-5 field programmable gate array (FPGA) platform. For a one-dimensional problem with 1,000 particles, the PPF-IMH architecture with four processing elements uses less than 5% of a Virtex-5 FPGA's resource and takes 5.85 μs for one iteration. We also incorporate waveform-agile tracking techniques into the PPF-IMH algorithm. We demonstrate a significant performance improvement when the waveform is adaptively designed at each time step with 6.84 μs FPGA processing time per iteration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call