Abstract

A computational study explores the aerodynamic and flow properties of rough-surfaced NACA-0018 airfoils using turbulent K-omega SST methodology and the control volume method. Ansys Fluent 2022 R2 was used to do the simulations, and Reynolds numbers between 5000 and 10000 were used. The analysis of how the rough surface affects the performance of the airfoil was the main goal of the study. The skin friction coefficient, drag force, lift force, pressure contours, and stream functions were among the many variables assessed. To have a thorough understanding of the flow behavior, these parameters were studied at various Reynolds numbers. The findings revealed a clear pattern: along the wall of the airfoil, the average drag force, lift force, and skin friction coefficient all increased linearly as the Reynolds number rose from 5000 to 10000. This discovery sheds important light on how the rough surface affects the overall aerodynamic performance of the airfoil. This study advances knowledge of the aerodynamic behavior of rough airfoils by illuminating the flow characteristics and their relationship to surface roughness. Significant results impact aeronautics, wind turbine design, and other airfoil applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call