Abstract

Biotin, also known as vitamin H or B7, acts as a crucial cofactor in the central metabolism processes of fatty acids, amino acids, and carbohydrates. Biotin has important applications in food additives, biomedicine, and other fields. While the ability to synthesize biotin de novo is confined to microorganisms and plants, humans and animals require substantial daily intake, primarily through dietary sources and intestinal microflora. Currently, chemical synthesis stands as the primary method for commercial biotin production, although microbial biotin production offers an environmentally sustainable alternative with promising prospects. This review presents a comprehensive overview of the pathways involved in de novo biotin synthesis in various species of microbes and insights into its regulatory and transport systems. Furthermore, diverse strategies are discussed to improve the biotin production here, including mutation breeding, rational metabolic engineering design, artificial genetic modification, and process optimization. The review also presents the potential strategies for addressing current challenges for industrial-scale bioproduction of biotin in the future. This review is very helpful for exploring efficient and sustainable strategies for large-scale biotin production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call