Abstract

The exploitation of exciting features of plastics for diverse applications has resulted in significant plastic waste generation, which negatively impacts environmental compartments, metabolic processes, and the well-being of aquatic ecosystems biota. A shotgun metagenomic approach was deployed to investigate the microbial consortia, degradation pathways, and enzyme systems involved in the degradation of plastics in a tropical lentic pond sediment (APS). Functional annotation of the APS proteome (ORFs) using the PlasticDB database revealed annotation of 1015 proteins of enzymes such as depolymerase, esterase, lipase, hydrolase, nitrobenzylesterase, chitinase, carboxylesterase, polyesterase, oxidoreductase, polyamidase, PETase, MHETase, laccase, alkane monooxygenase, among others involved in the depolymerization of the plastic polymers. It also revealed that polyethylene glycol (PEG), polyhydroxyalkanoates (PHA), polyhydroxybutyrate (PHB), polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), polyethylene terephthalate (PET), and nylon have the highest number of annotated enzymes. Further annotation using the KEGG GhostKOALA revealed that except for terephthalate, all the other degradation products of the plastic polymers depolymerization such as glyoxylate, adipate, succinate, 1,4-butanediol, ethylene glycol, lactate, and acetaldehyde were further metabolized to intermediates of the tricarboxylic acid cycle. Taxonomic characterization of the annotated proteins using the AAI Profiler and BLASTP revealed that Pseudomonadota members dominate most plastic types, followed by Actinomycetota and Acidobacteriota. The study reveals novel plastic degraders from diverse phyla hitherto not reported to be involved in plastic degradation. This suggests that plastic pollution in aquatic environments is prevalent with well-adapted degrading communities and could be the silver lining in mitigating the impacts of plastic pollution in aquatic environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.