Abstract
Regulating electron transport rate and ion concentrations in the local microenvironment of active site can overcome the slow kinetics and unfavorable thermodynamics of CO2 electroreduction. However, simultaneous optimization of both kinetics and thermodynamics is hindered by synthetic constraints and poor mechanistic understanding. Here we leverage laser-assisted manufacturing for synthesizing CuxO bipyramids with controlled tip angles and abundant nanograins, and elucidate the mechanism of the relationship between electron transport/ion concentrations and electrocatalytic performance. Potassium/OH− adsorption tests and finite element simulations corroborate the contributions from strong electric field at the sharp tip. In situ Fourier transform infrared spectrometry and differential electrochemical mass spectrometry unveil the dynamic evolution of critical *CO/*OCCOH intermediates and product profiles, complemented with theoretical calculations that elucidate the thermodynamic contributions from improved coupling at the Cu+/Cu2+ interfaces. Through modulating the electron transport and ion concentrations, we achieve high Faradaic efficiency of 81% at ~900 mA cm−2 for C2+ products via CO2RR. Similar enhancement is also observed for nitrate reduction reaction (NITRR), achieving 81.83 mg h−1 ammonia yield rate per milligram catalyst. Coupling the CO2RR and NITRR systems demonstrates the potential for valorizing flue gases and nitrate wastes, which suggests a practical approach for carbon-nitrogen cycling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.