Abstract
The construction of complex systems by simple chemicals that can display emergent network dynamics might contribute to our understanding of complex behavior from simple organic reactions. Here we design single amino acid/dipeptide-based systems that exhibit multiple periodic changes of (dis)assembly under non-equilibrium conditions in closed system, importantly in the absence of evolved biocatalysts. The two-component based building block exploits pH driven non-covalent assembly and time-delayed accelerated catalysis from self-assembled state to install orthogonal feedback loops with a single batch of reactants. Mathematical modelling of the reaction network establishes that the oscillations are transient for this network structure and helps to predict the relative contribution of the feedback loop to the ability of the system to exhibit such transient oscillation. Such autonomous systems with purely synthetic molecules are the starting point that can enable the design of active materials with emergent properties.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have