Abstract

Electrochemical synthesis of ammonia driven by clean energy is expected to realize the supply of ammonia for distributed production of industry and agriculture. Here, nickel nanoparticles and nickel in the form of single atoms were simultaneously anchored on the electrochemically active carrier BCN matrix through a structured domain strategy, which realized a high-efficiency, high-value-added, conversion of nitrate in sewage. Specifically, the electrochemical nitrate reduction reaction (NIRR) driven by [email protected] in alkaline media achieves an ammonia yield rate as high as 2320.2 μg h−1 cm−2 (at −0.5 V vs RHE), and Faraday efficiency as high as 91.15% (at −0.3 V vs RHE). Even in neutral and acidic media, the ammonia yield rates of NIRR driven by [email protected] are as high as 1904.2 μg h−1 cm−2 and 2057.4 μg h−1 cm−2, respectively (at −0.4 V vs RHE). The 15NO3- isotope labeling experiment verified that the recorded ammonia all came from the electrochemical reduction of NO3– on [email protected] Density functional theory (DFT) calculations show that both nano-Ni and single-atom Ni in [email protected] have the ability to electrochemically convert NO3– into NH3, and that the addition of BCN can further promote the NIRR on Ni.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.