Abstract

This research proposes a bi-level bi-objective model to regulate the usage of rail intermodal terminals for hazardous materials (hazmat) shipments, where government imposes tolls to deter carriers from using certain terminals. The complexity of the resulting mathematical program motivates the development of a hybrid speed-constrained multi-objective particle swarm optimization algorithm, which is then integrated with CPLEX, to solve the model. Through a real problem instance based on the intermodal service chain of Norfolk Southern in US, the toll-setting model is examined and further compared with a regular network design approach, in which certain terminals are closed to hazmat containers. The computational results show that the toll-setting policy is more practical and efficient, and the two models can be combined as a two-stage strategy in long-term hazmat transportation regulations. Additional managerial insights are derived for different stakeholders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.