Abstract
Elementary flux modes (EFMs) are an important concept in metabolic pathway analysis and for the derivation of macroscopic dynamic models. However, the computation of elementary flux vectors is facing combinatorial explosion with the size of the metabolic network, which hinders widespread application. This study proposes a systematic elementary flux mode reduction procedure to derive reduced-order dynamic models starting from an initial set of EFMs either generated by complete enumeration or subset selection. The procedure proceeds in several steps, including geometric and optimization-based criteria. The methodology ends up with a macroscopic bioreaction scheme with a reaction number smaller than that of the measured species, and shows very satisfactory prediction results, as illustrated with data of batch cultures of CHO-320 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.