Abstract

Elementary flux mode (EFM) is a fundamental concept as well as a useful tool in metabolic pathway analysis. One important role of EFMs is that every flux distribution can be decomposed into a set of EFMs and a number of methods to study flux distributions originated from it. Yet finding such decompositions requires the complete set of EFMs, which is intractable in genome-scale metabolic networks due to combinatorial explosion. In this article, we proposed an algorithm to decompose flux distributions into EFMs in genome-scale networks. It is an iterative scheme of a mixed integer linear program. Unlike previous optimization models to find pathways, any feasible solutions can become EFMs in our algorithm. This advantage enables the algorithm to approximate the EFM of largest contribution to an objective reaction in a flux distribution. Our algorithm is able to find EFMs of flux distributions with complex structures, closer to the realistic case in which a cell is subject to various constraints. A case of Escherichia coli growth in the Lysogeny broth (LB) medium containing various carbon sources was studied. Essential metabolites and their syntheses were located. Information on the contribution of each carbon source not obvious from the apparent flux distribution was also revealed. Our work further confirms the utility of finding EFMs by optimization models in genome-scale metabolic networks. joshua.chan@connect.polyu.hk Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.