Abstract
In real industrial processes, the rapid and accurate acquisition of quality variables is essential. Therefore, this paper proposes a pruned tree-structured temporal convolutional network (PT-TCN) for efficient and accurate variables prediction. First, a novel tree network is developed, utilizing dilated causal convolution blocks as nodes to avoid the loss of local information. Each node extracts distinct local information, and by concatenating all tree nodes, the network can capture a comprehensive range of temporal scales. Then, to avoid the increased complexity caused by the tree structure, we design an online two-stage pruning strategy to compress the tree network without introducing additional computations. During the training process, blocks are initially pruned based on the correlation assessment between quality variables and tree nodes. Subsequently, weight normalization layers are employed to evaluate the importance of output channels in blocks, thereby enabling intra-block channel pruning. The effectiveness of PT-TCN is verified on Tennessee Eastman benchmark process. In addition, experiments on the real zinc flotation process demonstrate that the proposed PT-TCN improves in R2 and MAE by 1.32% and 1.26% respectively in predicting quality variables, and it can reduce 91.8% parameters of the initial tree-structured TCN without sacrificing accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.