Abstract
Continuous girder bridges become increasingly popular because of the rapid development of highway throughout the world. Most of previous researches on vibration analysis of a multispan continuous bridge subject to complex traffic loading and vehicle dynamic interaction focus on the girder displacement not considering braking effects. In current literature, few studies have discussed the effects of braking on continuous girder bridges. In this study, we employ the finite element method (FEM) to investigate the dynamic response of continuous girder bridge due to three-axle vehicle. Vertical reaction forces of axles that change with time make bending vibration of girder increase significantly. The braking in the first span is able to create response in other spans. In addition, the dynamic impact factors are investigated by both FEM and experiments on a real bridge structure. The results of this study extend the current understanding of the bridge dynamic behaviors and can be used as additional references for bridge codes by practicing engineers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.