Abstract

This article presents a self-triggered digitally assisted hybrid low-dropout regulator (LDO). The proposed architecture uses an analog LDO for steady-state operation and a digital LDO to track large output current changes. The dual loop has a loop controller for coherent operation, and the digital loop is only triggered when there is a large load step. Therefore, the proposed LDO inherits some of the advantages of both parts. It achieves a high power supply rejection ratio (PSRR) from the analog part. The digital loop has a faster settling time and consumes less static power than the analog loop. In this design, the maximum load is 200 mA. For heavy load conditions, PSRR is −40 dB at 1 MHz. The quiescent current is 200 μA. The undershoot/overshoot with the corresponding settling time measured under a load current step of 200 mA/10 ns are 82 mV/89 ns and 112 mV/110 ns, respectively. The proposed LDO achieves a competitive 4.48 ps figure of merit. In the TSMC 65 nm process, the active area is approximately 0.027 mm2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call