Abstract
Particulate flow is of great importance from both the scientific and engineering points of view. Owing to the complexity of particle-flow interactions, direct numerical simulations (DNS) of inertial particulate flow with finite-size particles have been limited to a very small number of particles, while the industrial applications involve larger numbers with many orders of magnitude. This article presents a parallel implementation of a fictitious domain method for the DNS of particulate flows. The method is thoroughly tested and its parallel performance on distributed memory clusters is evaluated on a large-scale problem. Finally, we present the results for the separation of 21,336 particles of two different densities in a viscous fluid. Although there is still a significant gap between DNS and the industrial applications, the present algorithm allows to simulate significantly large number of particles so that a meaningful statistical analysis can be performed. This will help in the development of new closure relations for the averaged models of multiphase flows.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have