Abstract

Background and ObjectiveApnea is one of the most common conditions that causes sleep-disorder breathing. With growing number of patients worldwide, more and more patients suffer from complications of apnea. But most of them stay untreated due to the complex and time-consuming polysomnography (PSG) diagnosis method. Effective and precise diagnosis support system using electrocardiograph (ECG) is required. In this paper, we propose an approach using residual network to detect apnea based on RR intervals (intervals between R-peaks of ECG signal). MethodsIn our model, we apply residual network to represent information carried by RR intervals. Moreover, we proposed a novel perspective, called dynamic autoregressive representation, to provide interpretation of representing the RR intervals by convolutional layers. ResultsThis approach is tested for per-segment apnea detection using publicly available dataset on Physionet. 30 overnight recordings are used for training and 5 for testing. We achieve a good result of 94.4% accuracy, 93.0% sensitivity and 94.9% specificity. This result outperform other prevalent methods based on RR intervals. This model also shows its good adaptivity while using ECG-derived respiration signal (EDR) in experiments. Its extensiveness is evaluated and compared in experiments. The proposed model is also compared with deep neural networks using original ECG signals for apnea detection, and it achieves better result using fewer input samples. ConclusionsWe develop a deep residual network to detect apnea on low-sample-rate RR intervals. The result suggests a possibility of representing RR intervals by neural network. The model showed strong adaptivity when using EDR input.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.