Abstract
Sleep is a prominent physiological activity in our daily life. Sleep apnea is the category of sleep disorder during which the breathing of the person diminishes causing the alternation in the upper airway resistance. The electrocardiogram derived respiration (EDR) and heart rate (RR-time-series) signals are normally used for the detection of sleep apnea as these two signals capture cardio-pulmonary activity information. Hence, the analysis of these two signals provides vital information about sleep apnea. In this paper, we propose the novel sparse residual entropy (SRE) features for the automated detection of sleep apnea using EDR and heart rate signals. The features required for the automated detection of sleep apnea are extracted in three steps: (i) atomic decomposition based residual estimation from both EDR and heart rate signals using orthogonal matching pursuit (OMP) with different dictionaries, (ii) estimation of probabilities from each sparse residual, and (iii) calculation of the entropy features. The proposed SRE features are fed to the combination of fuzzy K-means clustering and support vector machine (SVM) to pick the best performing classifier. The experimental results demonstrate that the proposed SRE features with radial basis function (RBF) kernel-based SVM classifier yielded higher performance with accuracy, sensitivity and specificity values of 78.07%, 78.01%, and 78.13%, respectively with Fourier dictionary and 10-fold cross-validation. For subject-specific or leave-one-out validation case, the SVM classifier has sensitivity and specificity of 85.43% and 92.60%, respectively using SRE features with Fourier dictionary (FD).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.