Abstract

Sleep apnea is the most common sleep disorder that causes respiratory, cardiac and brain diseases. The heart rate variability (HRV) and the electrocardiogram-derived respiration (EDR) signals to capture the cardio-respiratory information and the features extracted from these two signals have been used for the detection of sleep apnea. Detection of sleep apnea using the combination of HRV and EDR signals may provide more information. This paper proposes a novel method for the automated detection of sleep apnea based on the features extracted from HRV and EDR signals. The method involves the extraction of features from the intrinsic band functions (IBFs) of both EDR and HRV signals, and the classification using kernel extreme learning machine (KELM). The IBFs of HRV and EDR signals are evaluated using the Fourier decomposition method (FDM). The energy and the fuzzy entropy (FE) features are extracted from these IBFs. The kernel extreme learning machine (KELM) classifier with four kernel functions such as ‘linear’, ‘polynomial’, ‘radial basis function (RBF)’ and ‘cosine wavelet kernel’ is used for the automated detection of sleep apnea. The proposed technique yielded a sensitivity and a specificity of 78.02% and 74.64%, respectively using the public database. The method outperformed some of the reported works using HRV and EDR signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.