Abstract

ObjectiveIn diabetes mellitus patients, hyperuricemia may lead to the development of diabetic complications, including macrovascular and microvascular dysfunction. However, the level of blood uric acid in diabetic patients is obtained by sampling peripheral blood from the patient, which is an invasive procedure and not conducive to routine monitoring. Therefore, we developed deep learning algorithm to detect noninvasively hyperuricemia from retina photographs and metadata of patients with diabetes and evaluated performance in multiethnic populations and different subgroups. Materials and methodsTo achieve the task of non-invasive detection of hyperuricemia in diabetic patients, given that blood uric acid metabolism is directly related to estimated glomerular filtration rate(eGFR), we first performed a regression task for eGFR value before the classification task for hyperuricemia and reintroduced the eGFR regression values into the baseline information. We trained 3 deep learning models: (1) metadata model adjusted for sex, age, body mass index, duration of diabetes, HbA1c, systolic blood pressure, diastolic blood pressure; (2) image model based on fundus photographs; (3)hybrid model combining image and metadata model. Data from the Shanghai General Hospital Diabetes Management Center (ShDMC) were used to develop (6091 participants with diabetes) and internally validated (using 5-fold cross-validation) the models. External testing was performed on an independent dataset (UK Biobank dataset) consisting of 9327 participants with diabetes. ResultsFor the regression task of eGFR, in ShDMC dataset, the coefficient of determination (R2) was 0.684±0.07 (95 % CI) for image model, 0.501±0.04 for metadata model, and 0.727±0.002 for hybrid model. In external UK Biobank dataset, a coefficient of determination (R2) was 0.647±0.06 for image model, 0.627±0.03 for metadata model, and 0.697±0.07 for hybrid model. Our method was demonstrably superior to previous methods. For the classification of hyperuricemia, in ShDMC validation, the area, under the curve (AUC) was 0.86±0.013for image model, 0.86±0.013 for metadata model, and 0.92±0.026 for hybrid model. Estimates with UK biobank were 0.82±0.017 for image model, 0.79±0.024 for metadata model, and 0.89±0.032 for hybrid model. ConclusionThere is a potential deep learning algorithm using fundus photographs as a noninvasively screening adjunct for hyperuricemia among individuals with diabetes. Meanwhile, combining patient's metadata enables higher screening accuracy. After applying the visualization tool, it found that the deep learning network for the identification of hyperuricemia mainly focuses on the fundus optic disc region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.