Abstract

In the present paper a procedure to calculate the properties of proteins in aqueous mixed solvents, particularly the excesses of the constituents of the mixed solvent near the protein molecule and the preferential binding parameters, is suggested. Expressions for the Kirkwood-Buff integrals in ternary mixtures and for the preferential binding parameter were derived and used to calculate various properties of infinitely dilute proteins in aqueous mixed solvents. The derived expressions and experimental information regarding the partial molar volumes and the preferential binding parameters were used to calculate the excesses (deficits) of water and cosolvent (in comparison with the bulk concentrations of protein-free mixed solvent) in the vicinity of ribonuclease A, ribonuclease T1, and lysozyme molecules. The calculations showed that water was in excess in the vicinity of ribonuclease A for water/glycerol and water/trehalose mixtures, and the cosolvent urea was in excess in the vicinity of ribonuclease T1 and lysozyme. The derivative of the activity coefficient of the protein with respect to the mole fraction of water was also calculated. This derivative was negative for the water/glycerol and water/trehalose mixed solvents and positive for the water/urea mixture. The mixture of lysozyme in the water/urea solvent is of particular interest, because the lysozyme at pH 7.0 is in its native state up to 9.3M urea, while at pH 2.0 it is denaturated between 2.5 and 5M and higher concentrations of urea. Our results demonstrated a striking similarity in the hydration of lysozyme at both pHs. It is worthwhile to note that the excesses of urea were only weakly composition dependent on both cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.