Abstract
As in a previous paper [Int. J. Pharm. 258 (2003) 193–201], the Kirkwood–Buff theory of solutions was employed to calculate the solubility of a solid in mixed solvents. Whereas in the former paper the binary solvent was assumed ideal, in the present one it was considered nonideal. A rigorous expression for the activity coefficient of a solute at infinite dilution in a mixed solvent [Int. J. Pharm. 258 (2003) 193–201] was used to obtain an equation for the solubility of a poorly soluble solid in a nonideal mixed solvent in terms of the solubilities of the solute in the individual solvents, the molar volumes of those solvents, and the activity coefficients of the components of the mixed solvent. The Flory–Huggins and Wilson equations for the activity coefficients of the components of the mixed solvent were employed to correlate 32 experimental data sets regarding the solubility of drugs in aqueous mixed solvents. The results were compared with the models available in literature. It was found that the suggested equation can be used for an accurate and reliable correlation of the solubilities of drugs in aqueous mixed binary solvents. It provided slightly better results than the best literature models but has also the advantage of a theoretical basis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.