Abstract

In a recent article (Schurr, J. M., D. P. Rangel, and S. R. Aragon. 2005. A contribution to the theory of preferential interaction coefficients. Biophys. J. 89:2258–2276), a detailed derivation of an expression for the preferential binding coefficient via the Kirkwood-Buff theory of solutions was presented. The authors of this Comment (Shulgin, I. L., and E. Ruckenstein. 2005. A protein molecule in an aqueous mixed solvent: fluctuation theory outlook. J. Chem. Phys. 123:054909) also recently established on the basis of the Kirkwood-Buff theory of solutions an equation for the preferential binding of a cosolvent to a protein. There are other publications that relate the preferential binding parameter to the Kirkwood-Buff theory of solutions for protein + binary mixed solvents. The expressions derived in the two articles mentioned above are different because the definitions of the preferential binding parameter are different. However, there are articles in which the definitions of the preferential binding parameter are the same, but the derived equations that relate the preferential binding parameter to the Kirkwood-Buff integrals are different. The goal of this Comment is to examine the various expressions that relate the preferential binding parameter to the Kirkwood-Buff theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.