Abstract

The wide cultivation of genetically modified (GM) crops has raised concerns on the risks to humans and the environment. 5-enolpyruvylshikimate-3-phosphate synthase isolated from Agrobacterium species strain CP4 (CP4-EPSPS) protein is most widely present in these crops. Therefore the measurement of CP4-EPSPS sensitively in a point-of-care testing (POCT) manner for the screening of transgenic plants is demanded. To date the development of quantitative POCT system has not yet been reported. In presented study, an electrochemical immunosensor towards CP4-EPSPS has been fabricated by integrating a portable bioanalytical device with a disposable screen-printed carbon electrode (SPCE) for POCT of GM crops. The dual-functionalized AuNPs were used as nanoprobes and prepared by simultaneously tagging horseradish peroxidase (HRP) and antibody on AuNPs with an exceptionally simple protocol. The sensitivity of the developed nanoprobe-based immunosensor was 62.5-fold higher than that using HRP-labeled antibody. As a result, the proposed immunosensor using SPCE could detect CP4-EPSPS down to 0.050 ng mL-1 with the linear range of 0.10-10 ng mL-1 within 65 min. In addition, the developed method has been validated with genuine GM crops and the results show a good correlation coefficient of 0.9909 compared with those of a commercial ELISA kit. Therefore, this portable electrochemical immunosensor is suitable for rapid and sensitive detection and provides a convenient and reliable platform for POCT assay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.