Abstract

Tumor-derived extracellular vesicles detection has emerged as an important clinical liquid biopsy approach for cancer diagnosis. In this work, we developed a novel hybrid plasmonic nanocavity consisting of hexagonal Au nanoplates nanoarray, SnS2/Au nanosheet layer and biomimetic lipid bilayer. Firstly, the hybrid plasmonic nanocavity combined the optical confinement for the ECL regulation and the biological recognition for the detection of extracellular vesicles. Secondly, MXene-derived Ti2N QDs have been prepared as ECL nanoprobe to label extracellular vesicles. Moreover, biomimetic lipid bilayer with specific aptamer was used to identify extracellular vesicles and integrate Ti2N QDs into the nanocavity with membrane fusion strategy. Due to the significant electromagnetic field enhancement at the cavity region, the hybrid plasmonic nanocavity provided strong field confinement to concentrate and redistribute the ECL emission of QDs with a 9.3-fold enhancement. The hybrid plasmonic nanocavity-based ECL sensing system improved the spatial controllability of EVs analysis and the accurate resolution of specific protein. It achieved the sensitive detection of extracellular vesicles in ascites and successfully distinguished the peritoneal metastasis of gastric cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.